

Using the CQG
Charting API
Document Version 2015-01
April 6, 2015

© 2015 CQG Inc.

Table of Contents

About this Document ... 1

CQG Charting API ... 2
Creating a Simple Study using VS2013 and C#: Moving Average ... 3

Creating a Study with State... 8

Interface Reference ... 10

Primitives Package .. 14

Page 1

About this Document

Historically, CQG has offered CQG IC users the ability to create their own market data analysis tools
using custom indicators. For example, CQG IC’s Formula Builder can be used to define study and
condition formulas for use with CQG IC applications, such as charts, quote boards, and trading tools.

With the introduction of CQG’s easy-to-use charting API, you now have the option of building custom
analytic tools as their own libraries (DLL).

This document provides the instructions and necessary references to create those analytics.

Programming experience is needed, especially experience developing Windows applications.

Publication History

Version Date Comments

2015-01 April 6, 2015 Initial publication.

Customer Support
Contact apisupt@cqg.com for assistance with the CQG Charting API.

For questions about a specific issue, attaching supporting documentation, such as a project, helps
expedite resolution.

Using the CQG Charting API

mailto:apisupt@cqg.com?subject=Charting%20API

Page 2

CQG Charting API

CQG’s Charting API is used to build custom analytic tools, that incorporate your proprietary logic, as their
own libraries (DLL).

These tools:

• can be created using several technologies

• are able to implement complex logic

• use external data with real-time updates

• are fully integrated with CQG IC for use wherever possible

• are displayed on a graphic interface enabling advanced visual representations on charts.

CQG uses the logic to call methods of the library to calculate market data and then displays the results
using native interfaces. You specify inputs.

The API was designed for maximum usability, so the user library is implemented using just two methods:
Initialize and Calculate.

Initialize is used to provide the operator with parameter values (if there are any). It is called when the
library is (re)initialized. Possible scenarios are:

• applying a user study to chart

• changing parameters

• switching CQG pages

Values of parameters are passed to the library in this method. Even if you use no parameters, the method
must be defined, and it must return a positive integer, as this return value informs CQG what depth of
historic values is required.

Calculate is the method used to perform actual calculations. This simple structure supports algorithms of
any complexity, provided the input data can include numerous inputs and custom depth of historical
values.

In addition to the simple framework, the library can instruct CQG IC to display custom graphic elements
(primitives). This option is available if you want to go beyond the standard palette of CQG IC data
representation options.

You can extend the Calculate method to define, and provide to CQG IC, a list of graphic primitives –
symbols, text, lines, shapes – and CQG IC displays them at positions specified.

One significant benefit is that the library is also capable of initiating data updates in CQG IC. In this way,
you can display third-party data updates in CQG IC. Initialize method provides and interface to the
IBarsRebuilder interface, which can be used later by the DLL to request updates of a whole or partial data
set. The integration of the library is straightforward: the compiled DLL, saved to a directory, is accessed
by name in CQG expressions.

Using the CQG Charting API

Page 3

Creating a Simple Study using
VS2013 and C#: Moving Average

1. Create a new project.

1.1. Open Visual Studio, and create a new project.

1.2. Select Visual C# Class Library as the project type.

Using the CQG Charting API

Page 4

2. Add a reference to the CQG Components library.

2.1. On the Project menu, select Add reference to open the Reference Manager window.

2.2. Click the Browse button to locate CQG.Operators.dll. By default, it is located here: C:\Program
Files (x86)\CQG\CQGNet\Bin\Components.

2.3. Select it as the reference.

2.4. After closing Reference Manager, go to Solution Explorer and confirm that CQG.Operators
appears in the References section.

Using the CQG Charting API

Page 5

3. Write code.

3.1. Reference CQG.Operators namespace (at the beginning of the file, add ”using
CQG.Operators;”).

3.2. Add your operator expression signature, name, and parameters.

We’ll call this method MyMovingAverage. It will have one input, the value to get average for, and
one parameter, the period of averaging. The system will not fill gaps in data.

3.3. Add [CQGOperator("MyMovingAverage(@, period) : [curve1]", FillInvalids
= false)] (see CQGOperatorAttribute Class).

3.4. Derive your class from IOperators and add implementation of its methods (see IOperator
interface).

After the definition of Initialize and Calculate methods are added, we implement them.

The Initialize method is used to receive the parameter value, the period of averaging.

This value is also returned by the method, so that CQG provides sufficient depth of historic data
in the Calculate method.

The Calculate method calculates the average of the inputs, which defines the required size (as
per the value returned in Initialize).

Using the CQG Charting API

Page 6

The entire implementation is brief.

4. Build the solution.

Note the path where the resulting dll was placed, and copy it to the User Operators folder.

By default, it’s here: C:\Users\Public\Documents\CQGNet\Private\).

You may need to create the folder.

In the end, MyMovingAverage.dll should be found here:
C:\Users\Public\Documents\CQGNet\Private\User Operators

Using the CQG Charting API

Page 7

5. Create a custom study in CQG IC.

5.1. Start or restart CQG.

5.2. Open Formula Builder, and create a custom study, calling your library by its signature:

In this example, we defined period as a parameter of the MyMA custom study.

The study can now be applied wherever studies can be used.

Using the CQG Charting API

Page 8

Creating a Study with State

Sometimes it may be beneficial to use a different model of the operator, a model with state. In this case,
the operator uses data it collects on previous bar(s) to compute the value for the current bar.

State could be used, for example, to collect arrays of historic data (the operator is guaranteed to be called
sequentially for bars from earliest to the most recent) or to keep results of temporary calculations.

Generally, state may be a more efficient solution when the operator calculates large arrays of data.

You can define state. It must implement IDeepCloneable. Method Calculate receives state from the
previous bar as an input/output parameter and must update it before exit.

We’ll use Moving Average state to illustrate the idea. The state stores the sum of [last period – 1] inputs,
so to calculate the current value, we’ll add a new element and divide by the period.

Modifying Moving Average operator code (from simple study example)

1. Add class State to your operator definition.

Using the CQG Charting API

Page 9

2. Change the Calculate method as follows:

3. Rebuild the solution.

4. Close CQG.

5. Copy the DLL to C:\Users\Public\Documents\CQGNet\Private\User operators.

6. Open CQG IC. The study is now functional.

Note that the new solution still uses a period-sized array of input data. We could use on the most recent
value as the input if we kept the array of [period] recent input values within the state.

Using the CQG Charting API

Page 10

Interface Reference

CQG.Operators.IOperator interface
Main interface for an external CQG operator. Has two member functions: Initialize and Calculate.

Initialize

int CQG.Operators.IOperator.Initialize
 (IDictionary< string, string > i_params,
 IBarsRebuilder i_barsRebuilder
)

Method initializes operators parameters. It must return number of input elements required for
calculation (period) or -1 if an error occurs.

i_params = Contains pairs 'parameter name' - 'parameter value'. Parameter names are
specified in operator's expression. For example, operator 'Op(@, param1,
param2)' will have 2 parameters 'param1' and 'param2'. Additionally the
dictionary may contain some general parameters that could be useful for
operators

Available general parameters:

“-GlobalExtraBarCount”

Integer, specifies extra bar count for study calculation. The value is set globally
and could be changed through System Preferences dialog (Page Limits – Extra
Bars for Study Calculation)

“-RootSymbol”

String, specifies the underlying contract symbol

“-SerialNumber”

Integer, specifies the system serial number

“-PriceToDollarMultiplier”

Double, specifies price-to-dollar multiplier for current contract

“-MinimumValueChange”

Double, specifies minimum price change for current contract

Notice that general parameter names start with a hyphen to avoid naming
conflicts with user-defined parameters.

i_barsRebuilder = Interface that could be used to initiate bars rebuilds.

Using the CQG Charting API

Page 11

Calculate

void CQG.Operators.IOperator.Calculate
 (IList< double >[] i_inputs,
 double[] io_outputs,
 ref IDeepCloneable io_state,
 IList< object > io_primitives
)

Calculates operator output values for the specified inputs. Can use state from previous value and
provide state for next value. Can return drawing primitives to be displayed with the study.

i_inputs = Collection of input data. Array items correspond to operator inputs.

For example, for operator 'Op(@, param1, param2)' we’ll have one element
in the array and for operator 'Op(@, @, param)' we’ll have two elements in
the array. Each array item is a list of N elements, where N is return value of
IOperator.Initialize.

io_outputs = Array of N elements, where N is a number of outputs specified in operator
expression. For example, operators 'Op(@)', 'Op(@) : [1]', 'Op(@) : [curve1]'
we’ll have one element in the array and operators 'Op(@) : [2]', 'Op(@) :
[curve1, curve2] we’ll have two elements in the array. The array should be
filled with calculated values for each output correspondingly.

io_state = State from the previous calculations. Initially the value is null; if the operator
assigns something to the parameter then it receives the value on the
Calculate call for the next bar. Simple operators that do not use state should
ignore this value.

io_primitives
=

List can be filled with primitive objects (allowed types are BorderPrimitive,
TextPrimitive, LinePrimitive and SymbolPrimitive) associated with the
calculation. Operators that produce only curve outputs should ignore this
parameter.

CQG.Operators.IDeepCloneable interface
In contrast to ICloneable interface, which doesn't specify whether the cloning should be deep copy,
shallow copy, or something between, this interface requires deep copy functionality. After a copy is
created, any changes to the original object shouldn't affect the copy. Interface has one member function:
DeepClone.

Deep Clone

object CQG.Operators.IDeepCloneable.DeepClone ()

Creates and returns a new object that is a deep copy of the current instance

Using the CQG Charting API

Page 12

CQG.Operators.IBarsRebuilder Interface
Interface initiates rebuild values for the defined range of inputs (bars). Interface has two member
functions: RebuildAll and RebuildRange.

RebuildAll

void CQG.Operators.IBarsRebuilder.RebuildAll ()
Initiates update of all bars.

RebuildRange

void CQG.Operators.IBarsRebuilder.RebuildRange
 (DateTime startTime,
 DateTime endTime
)

Initiates update of bars in the range specified.

i_start
=

Start time to rebuild.

i_end
=

End time to rebuild
(inclusive).

CQG.Operators.CQGOperatorAttribute class
Defines the metadata attribute to use on CQG Operator classes (the signature of the operator when
called from within CQG IC). The class with this attribute must implement IOperator interface.

CQG.Operators.CQGOperatorAttribute.FillInvalids
bool CQG.Operators.CQGOperatorAttribute.FillInvalids (getset)

Indicates whether input in IOperator.Calculate method always has valid values.

If it's set to true then all inputs contain only valid values, guaranteed. The method wouldn't be called until
we accumulate enough valid values, and later all invalid input values are automatically replaced with
previous valid input value. However, if set to false, any input value could be Double.NaN and the operator
should correctly process such inputs.

By default, this property is true.

Using the CQG Charting API

Page 13

CQG.Operators.CQGOperatorAttribute.Expression property
string CQG.Operators.CQGOperatorAttribute.Expression (get)

The format of the expression is:
cqg_operator := name name(params) -or- name(params) : [outputs_count] -or- name(params) : [outputs]

where:

name = operator name that could only contain alpha-numeric digits and underscore symbol.

params = comma separated list of inputs and parameter names. Inputs are specified by '@' symbol.

outputs_count = count of operator outputs.

outputs = comma separated list of output names. For output name it's allow to use 'curveN' where N
is a number in range [1,20] and some special names like 'open', 'high', 'low', 'close'

Examples:

SampleOp_1(@)

Operator with name 'SampleOp_1' having one input, one output and no parameters

SampleOp_2(@, param1) : [2]

Operator with name 'SampleOp_2' having one input, two outputs and one parameter named 'param1'

SampleOp_3(@, param1, @, param2) : [curve1]

Operator with name 'SampleOp_3' having two inputs, one output and two parameters named
'param1' and 'param2'

SampleOp_4(@, @, @) : [curve1, curve2, curve3]

Operator with name 'SampleOp_4' having three inputs, three outputs and no parameters

Using the CQG Charting API

Page 14

Primitives Package

Package contains collection of structures that instruct CQG IC to display custom graphic information on charts.

BorderPrimitive class
Used to specify custom rectangular or elliptic graphic primitive to draw on chart at a specified position. Primitive can have border, filling, and
tooltip.

Member attr/func Description

BorderPrimitiveType BorderType public attribute Specifies shape of the primitive (see BorderPrimitiveType).

ChartPosition Point1 public attribute Specifies top-left point of the primitive.

ChartPosition Point2 public attribute Specifies bottom-right point of the primitive.

PrimitivePen Pen public attribute Specifies pen to draw the border of the primitive.

If null, border is not visible.

Color BackgroundColor = Color.Empty public attribute Specifies color to fill the primitive.

Default = Color.Empty (no fill)

string Tooltip public attribute Tooltip text, shown on mouse hovering the primitive.

If null or empty string, tooltip is not displayed.

Using the CQG Charting API

Page 15

ChartPosition class
Used to specify position on the chart using time and value as coordinates.

Member attr/func Description

ChartPosition (ChartTime time=null, double
value=double.NaN)

public function Initializes a new instance of ChartPosition object.

Parameters:

time = position of primitive on time scale (x-coordinate of the chart)

value = position of primitive on value scale (y-coordinate of the chart).

ChartTime Time public attribute Specifies position of primitive on time scale (x-coordinate of the chart)

double Value public attribute Specifies position of primitive on value scale (y-coordinate of the chart)

Using the CQG Charting API

Page 16

ChartTime class
Used to specify position of primitive on time scale (x-coordinate of the chart).

Member attr/func Description

ChartTime () public function Initializes a new instance of ChartTime object corresponding to primitive position on
the bar currently being calculated.

ChartTime (int barOffset) public function Initializes a new instance of ChartTime object corresponding to primitive position on
bar with some offset related to the currently calculated bar.

Parameter:

barOffset = offset to the left (negative) or to the right (positive) from the calculated bar,
in bar count.

ChartTime (DateTime barTime, int
barOffset=0, int barIndex=0)

public function Initializes a new instance of ChartTime object corresponding to bar with specified
date/time and offset.

Parameters:

barTime = time of the bar to position primitive to

barOffset = if not zero, primitive position is shifted on the specified bar count

barIndex = if there are two or more bars with the same time, this zero-based index
selects a particular bar

DateTime BarTime public attribute Date/Time of the bar using minutes or milliseconds resolution.

int BarOffset public attribute Offset to the left (negative) or to the right (positive) in bar count.

int BarIndex public attribute Bar index (zero-based, it may be greater than zero if there are several bars with the
same time).

Using the CQG Charting API

Page 17

LinePrimitive class
Used to specify custom line graphic primitive to draw on chart at a specified position. Primitive can have tooltip.

Member attr/func Description

ChartPosition Point1 public attribute Specifies position of the first point of the line.

ChartPosition Point2 public attribute Specifies position of the second point of the line.

bool EndsInPoint1 public attribute Indicates whether the line ends at first specified point.

bool EndsInPoint2 public attribute Indicates whether the line ends at second specified point

PrimitivePen Pen public attribute Specifies pen to be used for drawing the line (see PrimitivePen).

string Tooltip public attribute Tooltip text, shown on mouse hovering the primitive.

If null or empty string, tooltip is not displayed.

Using the CQG Charting API

Page 18

PrimitivePen class
Used to specify pen to use for painting graphic primitives.

Member attr/func Description

PrimitivePen (Color color, int style=0,
double width=1.0)

public function Initializes a new instance of PrimitivePen object.

Parameters:

color = pen color

style = pen style as defined in GDI API, default = 0 (PS_SOLID)

width = relative pen width

Color Color public attribute Defines pen color.

int Style public attribute Defines pen style as defined in GDI API

Default = 0 (PS_SOLID)

double Width public attribute Defines relative pen width. Visual representation is relative to chart bar zoom, so the
value corresponds to study lines width.

Using the CQG Charting API

Page 19

SymbolPrimitive class
Used to draw one of the predefined set of CQG IC symbols on chart.

Member attr/func Description

SymbolPrimitive (SymbolType
symbolType, ChartPosition
position=null)

public function Initializes a new instance of SymbolPrimitive class.

Parameters:

symbolType = symbol to draw (see SymbolType)

position = position of the symbol on the chart

SymbolType SymbolType public attribute Specifies the symbol to draw (see SymbolType).

int SizeFactor = 1 public attribute Specifies relative size of the symbol.

Range = -1000 to 1000

ChartPosition Position public attribute Specifies position of the symbol on the chart.

Color Color = Color.Black public attribute Defines symbol color.

string Tooltip public attribute Tooltip text, shown on mouse hovering the primitive.

If null or empty string, tooltip is not displayed.

Using the CQG Charting API

Page 20

TextPrimitive class
Used to draw text label of CQG IC symbol on chart.

Member attr/func Description

TextPrimitive (string text,
ChartPosition point=null)

public function Initializes a new instance of TextPrimitive class.

Parameters:

text = text to display

point = position of text on chart

string Text public attribute Specifies the text.

Color TextColor public attribute Specifies the text color.

Color BorderColor = Color.Empty public attribute Specifies text border color (if any).

int BorderWidth = 1 public attribute Specifies border line width in pixels.

double Padding = 0.5 public attribute Specifies padding between text and border in symbol size units.

Color BackgroundColor =
Color.Empty

public attribute Specifies background color.

ChartPosition Point public attribute Point at which text should be placed. Properties HorizontalAlignment and
VerticalAlignment specify how the text should be aligned relative to this point.

HorizontalAlignment
HorizontalAlignment =
HorizontalAlignment.Center

public attribute Specifies text rectangle horizontal alignment relative to Point.

VerticalAlignment VerticalAlignment =
VerticalAlignment.Center

public attribute Specifies text rectangle vertical alignment relative to Point.

double SizeFactorMultiplier = 1.0 public attribute Specifies a multiplier for standard chart font size.

Using the CQG Charting API

Page 21

SymbolType enum
Specifies types of symbol predefined in CQG IC.

Symbol Description

Dash Dash symbol (several neighbor symbols on same price look like a dash line)

Cross Diagonal cross symbol

Plus Plus symbol

Dots Two dots symbol

UpTriangle Triangle symbol with one vertex on top and two on bottom

DownTriangle Triangle symbol with two vertices on top and one on bottom

UpBigArrow Big arrow pointing up symbol

DownBigArrow Big arrow pointing down symbol

UpSquare Square symbol aligned vertically by bottom side

DownSquare Square symbol aligned vertically by top side

UpDiamond Diamond symbol aligned by bottom vertex

DownDiamond Diamond symbol aligned by top vertex

LeftArrow Arrow pointing left, horizontally aligned right

RightArrow Arrow pointing right, horizontally aligned left

UpRightArrow Arrow pointing up-right, horizontally aligned right, vertically aligned top

DownRightArrow Arrow pointing down-right, horizontally aligned left, vertically aligned bottom

UpArrow Arrow pointing up, vertically aligned top

DownArrow Arrow pointing down, vertically aligned bottom

BigSquare Big square symbol

SmallSquare Small square symbol

BigDiamond Big diamond symbol

SmallDiamond Small diamond symbol

BigCircle Big circle symbol

Using the CQG Charting API

Page 22

Symbol Description

SmallCircle Small circle symbol

LeftArrowCentered Arrow pointing left, horizontally and vertically aligned center

RightArrowCentered Arrow pointing right, horizontally and vertically aligned center

UpRightArrowCentered Arrow pointing up-right, horizontally and vertically aligned center

DownRightArrowCentered Arrow pointing down-right, horizontally and vertically aligned center

UpArrowCentered Arrow pointing up, horizontally and vertically aligned center

DownArrowCentered Arrow pointing down, horizontally and vertically aligned center

Line Line symbol (several neighbor symbols on the same price look like a line)

LetterR Letter 'R' symbol

HorizontalAlignment enum
Specifies horizontal text alignment.

Left Left aligned

Right Right aligned

Center Center aligned

VerticalAlignment enum
Specifies vertical text alignment.

Top Top aligned

Bottom Bottom aligned

Center Center aligned

BorderPrimitiveType enum
Types of border for BorderPrimitive.

Rectangle Rectangular shape

Ellipse Elliptical shape

Using the CQG Charting API

	About this Document
	Publication History
	Customer Support

	CQG Charting API
	Creating a Simple Study using VS2013 and C#: Moving Average
	Creating a Study with State
	Interface Reference
	CQG.Operators.IOperator interface
	CQG.Operators.IDeepCloneable interface
	CQG.Operators.IBarsRebuilder Interface
	CQG.Operators.CQGOperatorAttribute class
	CQG.Operators.CQGOperatorAttribute.FillInvalids
	CQG.Operators.CQGOperatorAttribute.Expression property

	Primitives Package
	BorderPrimitive class
	ChartPosition class
	ChartTime class
	LinePrimitive class
	PrimitivePen class
	SymbolPrimitive class
	TextPrimitive class
	SymbolType enum
	HorizontalAlignment enum
	VerticalAlignment enum
	BorderPrimitiveType enum

